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The application of stability theory in Laminar Flow Control

(LFC) research requires that density and velocity profiles be

specified throughout the viscous flow field of interest. These

profile values must be as numerically accurate as possible and

free of any numerically induced oscillations. To date, a high

percentage of the boundary-layer solutions for use in three-

dimensional (3-D) stability analysis programs have been obtained

using quasi-3-D procedures due to the general unavailability of

3-D boundary-layer programs.

Several mature 3-D boundary-layer programs based on finite-

difference techniques (note: integral approaches are not

considered in the present paper) currently exist, for example,

references 1 through 4. Unfortunately, these programs are not

available for general use by the LFC research community due to

company proprietary controls. In addition to proprietary

controls, most of the programs are not structured or adequately

documented for ease of use; that is, their use would generally

require direct interaction with and/or assistance from the group

or individual that developed the program.

Guidelines for the present research project are presented in

figure 1 and are as follows: (i) develop an efficient and

accurate procedure for solving the 3-D boundary-layer equations

for aerospace configurations; (2) develop an interface program to

couple selected 3-D inviscid programs that span the subsonic to

hypersonic Mach number range; and (3) document and release

software to the LFC research community.

OReosons for deve10pment

• No genero] progromexIsts thor Is reod|]y ovoilobIe to
oil groups Involved In Iom|noF flow control reseerch

• No generol progFom exists thor Is coupled d|Fectly wlth
the most often used Invlscid pFogroms over the subsonic
to hypersonic Moth number ronge

• Most existing progroms ore ot best second-order eccurote
ond often degenerote to f|FSt-OFdeF OCCUFOCy

O Guldellnes for development

• User friendly

• High-order OCCUFOCy; O(_Z4), O(AX, AY) 2

• Flexlble Interfoce

• Document end re]eose to LFC ReseoFch comrmJnIty

(Finite difference numerics)

FIGURE 1
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ORDER OF PRESENTATION

As a result of time constraints for the present symposium,

it was necessary to condense the material that would have been

included in three presentations into a simple co-authored

paper. Consequently, no attempt will be made to either (i) give

a review of current boundary-layer literature or (2) compare

numerical results from the present solution procedure with

previously published numerical and/or experimental results. The

material to be presented is outlined in figure 2 and is divided

into two basic categories. The interaction between these

categories will not be discussed due to time limitations.

Within the inviscid area the focus of the presentation will

be on the processing of the inviscid flow field data required as

input to the boundary-layer program. The surface Euler equations

will be defined together with the numerical procedure for solving

the nonlinear system. Several test cases will be presented where

results obtained from standard interpolation procedures will be

compared with results from the surface Euler equations.

Within the viscous area the focus of the presentation will

be on the numerical procedure and the establishment of its

accuracy and numerical efficiency. The boundary-layer equations

will not be presented in equation form; however, their

mathematical character and the required boundary and initial

conditions will be discussed. The reader interested in the full

equations can find them in several publications (see refs. 1

through 6, for example).

• Invtscld

• Interfaceprogram
• Invlsciddata treatment
• SurfaceEu]erequations

• Boundaryconditions

• Numerlco]procedure
• Test cases

• VIscous

• Governingequotlons
•Boundaryconditions
• In|tlolconditions

• Transformation

• SoIutlontechnique
• Numericalscheme
• Motrlxstructure

• Test cases

FIGURE 2
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INTERFACE PROGRAM

The interface program provides the required linkage between

the most appropriate inviscid code for the configuration and

flight Mach number regime and the three-dimensional boundary-

layer program. The functions of the interface program are

presented in figure 3. The interface program must be capable of

(i) generating a sufficiently refined boundary-layer grid; (2)

calculating the metric coefficients and related geometric

parameters for this grid; (3) interpolating the pressure field

from the relatively coarse grid used for the inviscid flow field

solution to the relatively fine boundary-layer grid with

automatic smoothing capability as required; (4) solving the

surface Euler equations on the wall boundary to obtain the

inviscid velocity components and their gradients in the _,n

coordinate system; and (5) generating all required input files

for the boundary-layer program. In addition to these primary

functions, the interface program prepares diagnostic plot files

and will act as the interactive link for viscous-inviscid

interaction calculations.

Success (measure of acceptance and use of software by LFC

research groups) of the boundary-layer program will depend, to a

large extent, on the structure of the interface software.

• General functlon
• Provide the requlred linkage between selected Inviscia

programs that span the subsonlc to hypersonic MaCh
number range and the boundary-layer program under
development

• Speciflc functions
• Generation of boundary-layer grid and related metrlc

coefficlents
• Interpolation of inviscid pressure distribution from

the relatively coarse lnvlscld grid to the sufficiently
fine boundary-layer grid

• Solution of the surface Eu]er equations to obtaln
the invlscid velocity distribution over the
boundary-layer grid

• Generation of input and output f|les for the boundary-
layer program

• Interface for vlscous-lnviscid interaction

FIGURE 3
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TREATMENT OF INVISCID DATA

The sensitivity of stability theory to oscillations in the

viscous flow field requires that the inviscid data and body

geometry (metric coefficients, etc.) be carefully treated in

order to avoid the introduction of nonphysical oscillations.

Alternate approaches to inviscid flow-field data treatment are

presented in figure 4. A conventional approach has been to use

spline interpolation to transfer data from the relatively coarse

inviscid grid to the sufficiently fine boundary-layer grid.

These interpolated results are then numerically smoothed. The

interpolation approach is the most straightforward; however,

large errors can occur in the interpolation and arbitrary

smoothing of vector quantities. This approach yields results

that are not consistent; that is, they do not satisfy the

governing inviscid equations within an acceptable error bound.

The present approach is to interpolate the pressure field

from the coarse inviscid grid to the fine boundary-layer grid.

This pressure distribution Pw(_,n), together with known initial

and boundary values, is used in the numerical solution of the

surface Euler equations. The advantage of the approach is that

exact values of u and v can be enforced on certain boundaries,

the velocity components (u,v) and their gradients in

the _,n plane are smooth, and the numerical results are

consistent.

• conventional approach
mlnterpo]ate 0, 9, _, P from

lnvlscld solution grid to
boundary-layer grid
Transform u, v, w to u, v
on boundary-layer grld

Surface element

• Disadvantages
• Errors from interpolation
of vector quantities con
be very large

• Dlfflcult to obtain
smooth distributions

• Numerical results are
not consistent

• Present approach

• Interpolatepressure field
from inviscid solution grld
to boundary-layergrid

• Numerlcalty solve the surface
Eater system to generate
u, v on boundary-layergrld

__ --Invlscid grid
------Viscous grid

___2_• Advantages

• "Exact" values of u, v can
be enforced on known
boundaries

• Smoothness of solution of
u, v and their gradients

• Numerlcal results are
consistent

FIGURE 4
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SURFACE EULER EQUATIONS

The surface Euler equations are obtained from the three-

dimensional boundary-layer equations in the limit as _ + ®. The

system obtained from the _ and _ momentum equations are presented

in figure 5. The system consists of two nonlinear hyperbolic

equations for the _ and n momentum equations and an algebraic

relationship for the energy equation (perfect gas). The bk_
values are known functions of the grid system. The pressur_ is

known from the interpolation procedure. The unknowns are

p, u, and v, where p, u, and v are the density, _-velocity

component, and n-velocity components, respectively. The

equations are a first order, nonlinear hyperbolic system where

the local streamlines are characteristic. The system can be

solved with an explicit march in _ while remaining fully implicit

in n provided the initial conditions and boundary conditions can

be specified as indicated in figure 5.

A method for calculating the inviscid velocity vectors from

a specified pressure field was first reported by Cebeci and Meier

(ref. 6) for incompressible flow around an ellipsoid at angle of

attack. Vollmers (ref. 7) and Gleyzes and Cousteix (ref. 8)

improved the approach by integrating the Euler equations.

Anderson (ref. 3) described a method using experimental pressure

distributions on rotating turbine blades using the Euler

equations. The current procedure extends these concepts to

complex geometry associated with wings and fuselages using a

second-order numerical scheme.
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O Equatlon system obtained from boundory-]ayer equations
in ltmlt as _

• Equat Ions

-mOmentum

aU + b aU aP b aPP[bl].U"_'- _" ].2V_--_q + (b12 u2 + b14uv + b[5v2)] = (b16_- _ + 17a,q}

m -mOmentum

av vaV (b23 U2 + b24uv + b25v2)] = aP b aPpib21u_---E. + b22 _ + (b265- _ + 27_--6)

tChoracter of system .......
o Flrst order, non[J.near hyp@rbo]]c system
• Local stream!ines are charocterlst Ics

eExpllclt march in _; lmpllclt In n

,3

¢ B.C.

gounoory
surface :

B,C,

FIGURE 5
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BOUNDARY CONDITIONS FOR FUSELAGE "TYPE" GEOMETRY

As previously noted in figure 5, initial and boundary

conditions must be specified for physical flows corresponding to

aerospace configurations. These conditions are presented in

figure 6(a) for a fuselage type body. The fuselage type body

with a plane of symmetry relative to the flow field has well

defined initial and boundary conditions. The initial conditions

at the stagnation point in the physical plane are u = v = 0.

These conditions from the required initial values along

the _ = _o line in transformed space. Along both the leeward and

windward lines of the symmetry plane in physical space one can

specify the conditions v = 0 and _u/_n = 0. These form the

boundary conditions in the transformed plane for the

lines _ = no and n = Dmax"

• Physical space (X,Y,Z)

Leeward line7 f j

z
__'__ _" Plane

xly 
symmetry

= Windwar_stagnationd line
point

• Transformed space (_, n)

1"-

U = O; V = O

Stagnation

point

au
V=O; an -0

Leeward ! ine

Windward line

aU
V=O; an -0

FIGURE 6 (A)
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BOUNDARY CONDITIONS FOR WING GEOMETRY

Boundary and initial conditions for wing type geometry are

somewhat more complex than those for fuselages. A schematic of a

typical wing element is presented in figure 6(b) where u and A

denote the angle of attack and leading-edge sweep,

respectively. At angle of attack, the leading-edge attachment

line will be displaced from the geometrical leading edge as shown
in the sketch. The location of the attachment line is not known

a priori and must be obtained by an iterative solution procedure

that positions the line such that u = 0 to within a specified

error bound. This becomes the _ = _o line in the transformed

plane. The remaining initial condition along the _ = _o line is

obtained from the inviscid flow field results (see ref. 9). The

boundary conditions along either the root chord or symmetry plane

chord and a chord near, but not located at the wing tip, must be

specified. The extrapolation conditions shown in the _,n plane

in figure 6(b) for the wing tip and root chord regions have been

used for the results contained in the present material. A more

detailed discussion of the initial conditions for the leading-

edge attachment line and boundary condition studies for the wing

tip and root regions is presented in reference 9.
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• Physlcal space (X,Y,Z)

Wingtlp or

outflow Z Symmetry plane

rootPlone• /- or c oroo
y V

specified

or

calculated

Attachment Iine

• Transformed space ( _,_ )

r]

Wing tip

---7"_" av"" r--I
an = 5_ = CI I

FIGURE 6 (B)

s
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I

i

I

=
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NUMERICAL PROCEDURE

As previously mentioned, the surface Euler equations are

hyperbolic. In order to satisfy the stability requirement, the

difference stencil must be rotated in relation to the cross flow

velocity as shown in figure 7(a).

• Difference stencil

r]

tBoundary conditions

Negative cross flow-4: j+2

: : j+l

,_:. j

Initial
conditions

:: :: :; j

Positive cross flow

/, : j-1
/

:' j-2

1-2 i-1 i

Boundary cond i t ! ons

FIGURE 7 (A)
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DIFFERENCE APPROXIMATIONS

The point upwind differences are used to approximate

derivatives with respect to _ (see fig. 7(b)). For derivatives

with respect to n a 5-point stencil is used and rotated to

satisfy stability where e = 1 for v < 0; e = -i for v > 0.

Nonlinear terms are treated in an iterative sense by lagging

the nonlinear quantity by one iterative step. The final set of

discretized equations are "locally block diagonal."

fi-i j g2 }af 1 fi j(l+g) - ' + fi-2,J (17_)
B--_-l,j= (_i,j - <i-l,j ) " (l-g)

(_l,j - _i-l,j)

g = (_l,j -_i-2,j)

_t 1 fl-l,j - fi-l,j+_

=(_i,j- ni,j+_) {fi,j - fi,j+_+ 1 + _ ;_

;k
ni-l,j+_ - n i_l,j+2_

_i,j - rli,J+_

_ =+I V< 0

_ =-i V> 0

+
fi-l,j+2_

FIGURE 7 (B)
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PRESSURE COEFFICIENT CONTOURS
_s

A test case of interest to the Langley Research Center's LFC

program involves experimental and analytical studies of the

stability characteristics of a fuselage forebody shown in figure

8. Figure 8(a) presents contours of the pressure coefficient

distribution interpolated from a relatively coarse inviscid

solution onto a fine boundary-layer grid. The initial inviscid

distribution was obtained using the method of reference I0.

-Ce-ssna fuselage forebody

_-_Moo- 0.3; a = 0 °

0',0

0.1

0.2

0.4

Cp
0.5

;_-- 0.6

0.7

.................._ .............._ ......_ 1.0

FIGURE 8 (A)

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH
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INVISCID FLOW-FIELD CONTOURS

528

The pressure contours in figure 8(a) indicate a smooth and
"well behaved" flow field; however, close examination of the
cross flow velocity contours in figure 8(b) indicates a physical
problem not easily solved by traditional boundary-layer
procedures. The solid line on figure 8(b) indicates the locus of
a v = 0 contour line. In the region above this line v > 0

(positive cross flow) while below the line v < (negative cross

flow). Consequently, both the leeward and windward lines of the

plane of symmetry are inflow lines. This presents a severe

problem for traditional boundary-layer approaches where one

normally obtains a numerical solution of the reduced set of

boundary-layer equations along the windward line (generally an

outflow line). Using this solution as one of the two required

initial data planes, the solution can be marched in the direction

of increasing q (direction of positive cross flow velocity) to

obtain the solution for _ = _i' no < n _ nma x, and all _. The

surface Euler equations could be numerically integrated

for _ = _i' no < q < nma x because the entire n-line was treated

implicitly.

Cessna fuselage forebody =-'
Moo -- 0,3; a = 0 '_ -------

I -0.281
-0.121

0.358

0.518

0.678 '0.039

01030

0.998 0.098

i

z

=

=

|

Pressure coefficient Cross flow velocit_

FIGURE 8 (B)

ORIGINAE PAGE'

BLACK AND WHITE PHOTOGRAP_

OR{GEIAL PAGFc/R

OF POOR_4_



SURFACEEULER VERSUSSTANDARDINTERPOLATION

Comparisons of interpolated u and v values with those
obtained from solving the surface Euler equations are presented
in figure 9. The interpolated values were carefully smoothed to
get the results presented in figure 9(a) as opposed to no
smoothing for the velocity field obtained from the surface Euler
eouations. In addition, the interpolated values are not
consistent.

Cessne fuse]oge forebody

Moo= 0,3; _ = 0°

10- 1,0

8 - _-U ,8

6----- Interp01oted
Surf0ce Euler ,6

4 ,4

- ClD

2 ,2 Cp

0 ,,V 0 _:

n
-,2 J -,2

,5 1,0 ,05 ,1

X = I; 0_< _ _ _r 0 < X _1,5; _=5-_
6

FIGURE 9 (A)
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CROSS FLOW VELOCITY CONTOURS

The carpet plots of cross flow velocity presented in figure

9(b) are indicative of oscillations resulting from interpolation

of the velocity components. Stability theory is critically

sensitive to oscillations of cross flow velocity; consequently,

the surface Euler approach should be used to obtain smooth and

consistent input data for the boundary-layer solution.
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Cessna fuselage forebody i
Moo = 0,3; o_ = 0°

V

i Flow direction

4
_lIW_JWJIT_I_ I_ I Flow direction

Interpolation _ F

_ Surface Euler- i
|

FIGURE 9 (B)



COMPARISON OF SURFACE EULER WITH INTERPOLATION

Numerical results are presented in figure i0 for a wing

having an NACA-0012 airfoil section. The inviscid flow field was

obtained using the method of reference I0. Comparisons of the

interpolated and smoothed streamwise velocity are compared with

surface Euler results in figure 10(a). The agreement in

magnitude appears to be satisfactory with the exception of a

region just downstream of the leading-edge attachment line. The

agreement appears to be independent of span location.

NACA-0012; A = 30"; o_ = 8"; Moo = 0,22; AR = 2,1

(upper surface)

2

U
-- 1
Uoo

Surface Euler

Interpolation

90% span

/
5% span

I I I

0 ,025 ,050 .075

X

FIGURE i0 (A)
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COMPARISON OF SURFACE EULER WITH INTERPOLATION

The stability equations will be integrated forward in space

beginning at the leading-edge attachment line. A closer

examination of the results presented in figure 10(a) is presented

as a derivative with respect to x in figure 10(b). The

oscillation in _U/_ presented in fiqure 10(b) for the

interpolated values is not acceptable. It can be seen that the

surface Euler equations Field smooth values of _U/_ without

requiring smoothing. These values are consistent with the

governing equations.

' A - o, C_. - o, _ , -NACA-O012. - 30 . .8 . Moo - 0,22. AR - 2,1

(upper SUFface)

-- Surface Euler k-kC_.

'-- Interpolation -. _

:-"-' 90% span

L __ I ' 5% span

0 ,025 ,050 ,075

X

FIGURE IO(B)
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THREE-DIMENSIONAL BOUNDARY-LAYER SYSTEM

Researchers involved in the numerical aspects of LFC are

familiar with the three-dimensional boundary-layer equations;

consequently, the equations are not presented. Readers

interested in the equations are refered to references 1 through

5. Certain characteristics of the system are presented in figure
ii and warrant further discussion.

The system consists of four nonlinear partial-differential

equations (PDEs) of mixed type. The system is hyperbolic in

planes parallel to the boundary surface (_,n planes) and

parabolic in the direction normal to these planes.

For perfect gas flow, the system is closed with algebraic

equations for state and viscosity. The unknowns are u, v, w, T

and p representing the velocity components in the _,_,_

directions, static temperature and density, respectively.

Pressure is constant normal to the wall boundary.

The present work focuses on laminar flow; however, the

software has been structured to model the turbulent terms using

eddy viscosity and eddy conductivity closure. Careful studies

will be made in this area at some future date. This would allow

a uniform approach for boundary-layer calculations to be

developed for laminar, transitional, and turbulent flows.

t Equations

• Continuity

• Momentum (2; X, Y)

• Energy

• State; viscosity

Nonlinear PDE

Algebraic

• Turbulence

• Eddy vlscosity/eddy conductivity } Not LFC requirement

FIGURE ii (A)
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THREE-DIMENSIONALBOUNDARY-LAYERSYSTEM

Boundary conditions have been treated as generally as

possible. Wall mass transfer can be specified together with

either wall temperature or heat transfer distributions. Edge
values are obtained from the interface software solutions of the

surface Euler equations. Initial values can currently be

generated for fuselage and wing geometries. The reader

interested in the special equation sets for the initial value

planes is referred to reference 5.

I

• Boundary conditions

• Wall boundary

• U; V (no slip)

• Ww = Ww (X,Y)

• Tw = Tw (X,Y)

or qw = qw (X,Y)

• Initial values

• Fuselage "type" geometry

• 3-D stagnation polnt

• Symmetry plane

• Edge values

• Surface Euler system

• Wing "type" geometry

• Leading edge attachment line

• Symmetry plane

• Root chord approximation

" ii

__=

FIGURE If(B)
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NUMERICALSCHEME

The difference stencil together with a sketch depicting the

Raetz influence principle (ref. 5), and the difference

approximations are presented in figure 12(a). Two separate

stencils are used for convective derivatives in the _,q-plane.

The particular stencil utilized at each _ point depends upon the

sign of the cross flow velocity. For negative cross flow the

Krause et al. (ref. ii) zig-zag scheme is used to satisfy the

zone of influence principle.

• Difference stencil

• Positive cross flow

()l,j,k

i-2,j 1-1,j

k-I/2 pl0n_ _ _.......

) i,j, k-1/2

i,j,k-1

• Negotive cross flow

i-l,j+l

j :::::::::::::::::::::::::::::
k-1/2 _p

i,j-i

• Roetz influence principle

Domoin of de[) Dendence_..lT_m(]in of influence

In|tial dot(]

/.._rfoce X_-'_--Chorocteristic surfoces

FIGURE 12 (A)
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DIFFERENCE APPROXIMATIONS

The difference approximations are presented in figure

12(b). The approximations are second-order accurate in planes

parallel to the wall and fourth-order accurate in the direction

normal to the wall boundary. In the planes parallel to the wall,

a weighted three-point upwind scheme is used to approximate the

convective partial-derivatives (see ref. 12).

In the direction normal to the wall boundary, a 2-point

compact scheme with fourth-order accuracy is used (see refs. 13
and 14).

ilil

l_- derivatives

1

a_____k-g

i,j

....... T

NUMERICAL SCHEME
Difference relations

= (a1¢i + a2¢i_1 + a3_i_2)K-½.
J

lq - derivatives
1

a____k-7 =
(bl_j + b2¢j-i + b3¢j-2)

ant, J

1
a qb k-2

a_qi, j
= (clqbj_1

v>O

+c2oj)*- +(c3-j+c  j+l)K-½
1 !

._ = derivatives.

K-l)  C(gl_ _ + g2 Q )
l,j l,j

v<O

536

- aj2(g5 B'k + g4_'k-l)

where
_k = Solutlon vector

i,j

FIGURE 12 (B)

= 0(A c)4"
i,j

i
!

__=

=

z

z



SOLUTION TECHNIOUE

Substitution of the difference relations into the

transformed governing equations yields a set of seven nonlinear,

coupled difference equations in seven unknowns (see fig. 13).

Newton's method is used to linearize the system. The linearized

system is solved using an efficient block-tridiagonal matrix

inversion based on LU factorization.

The two momentum equations yield a 4x4 block tridiagonal

system in F, F', G, G', where F = u/ue, G = v/ve, F' = aF/a_ and

G' = aG/a_. The energy equation yields a 2x2 block for H and

H'. The normal component of velocity, w is updated from the

finite-difference form of the continuity equation. The system is

solved in an iterative loop until convergence is obtained within

a fixed error bound.

• Difference equations are coupled and nonlinear

• Newton's method used for linearlzotion

_P= _P-1 + 6_P-1

• The linearized system of equations in 6Q forms o block

tri-diagonol system of the form

{AI_-_k-1+ {B}_-_K+ {CI_-_K+I= RK

Where

{AI ,,,,,

Q

4x4

2x2

W

{C} are block matrices of system

is solution vector

block tri-diogonol for momentum eqs

block tri-diogonol for energy eq

updated from difference form of continuity eq

FIGURE 13
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ACCURACY OF METHOD

The results of a study of the accuracy of the numerical

scheme together with the effect of the number of grid points

normal to the wall boundary for a fixed _max are presented in

figure 14. The truncation error study for Blasius flow clearly

indicates a slope of 4 to 1 as compared with 2 to 1 for the

second-order scheme of reference 12.

The numerical advantage of the fourth-order method is shown

for 3-D stagnation point flow where streamwise velocity profiles

(u/u e) are presented for a fixed _max for 40, 16, and 8 points

normal to the wall boundary (note that only a sample of the

computed points is presented for clarity). Comparisons of the

results for NPZ = 8 with NPZ = 40 indicate that the correct

profile values can be predicted with as few as 8 points. This

comparison represents a speed/storage advantage of 5 to i.

Loglo,

(error

of c i)

Blosius flow 3-D stagnation point flow

-1,7

-2,3

-2,9

m

-4,7 -

-5,3 -

-5,9 -

-6,5
0

--Fourth-order scheme
\ ---Second-order scheme\

_ 4
\

\

\\ 3

\_ Zeta
2

\

1

1 I I ! I

.6 1.2 1.8 2.4 3.0

LOglO, (no, of points)

0

-Present scheme
- -- NPZ = 40

_ 0 16

[3 8

()

0 ,2 ,4 ,6 ,8 1,0

U/UE

FIGURE 14
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CYLINDER ON FLAT PLATE

Numerical results for incompressible flow past a cylinder

mounted normal to a flat plate are presented in figure 15. Total

and cross flow velocity profiles are presented for 50, 25, and 12

points normal to the wall as well as compared with the second-

order theory of reference 12. The present fourth-order method

produces excellent results for as few as 12 grid points normal to

the wall boundary for this test problem.

Totol velocity

10,-X = 19,52 Y = 3,05

8, -- I

zeto

0 ,25 ,50 ,751,00

UT/UT E

10,

!

0

Cross flow velocity

Present scheme

-- NPZ = 50
O 25

[] 12

Second 0rdeF

A 50

,50 1,O0 1,5

V/VE

FIGURE 15
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PROLATE SPHEROID AT ANGLE OF ATTACK

!

Numerical results for F' w and G w for incompressible flow

past a prolate spheroid at 8 ° angle of attack is presented in

figure 16. The results are presented for three x !ocations where

varies from 0 ° on the most windward line of symmetry to 180 ° on

the leeward line. Of particular importance is the reverse region
of cross flow: G' < 0; x = 1.52; 60 ° • q • 180 ° (note that

= V/Ve)G' = (SG/8_)w; G wW

Ii

1,00 -
-- Present scheme
0 Second order

Z

laC-- 2 -_.1

'_____O_ x ,15 -.75 = 0,50

,i0 -

.:.>%2 .oooi, 
1,52 -,05/- NegotiveCROSS f]ow i

,,o ",',-,°o ' '_o -'_°o _o _o _o !
i

de r n degrees i

FIGURE 16 !
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SWEPT WING FLOW

The final swept wing flow test case presented is for a wing

having an NACA-0012 airfoil section. A schematic of the geometry

and test conditions is presented in figure 17(a) together with

calculated values of the chordwise (6) and spanwise (_) skin
friction coefficients.

Schematic of geometry

Moo = 0,22

NRo° = 7,7 x 106

(Dr = 8 °

= 30°

X

|Y_w

Leading edge __
attachment line

Z

Skin friction coefficient

4 x 10-8

3

2

Present scheme

--NPZ = 50

0 20

[] 12

1 Chord-wise

0

-i

Span-wise

0 ,2 ,4 ,6 ,8 1,0

FIGURE 17 (A)
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SWEPT WING FLOW: VELOCITY PROFI_LES

Calculated total and cross flow velocity profiles are

presented in figure 17(b). The numerical results were obtained

for grid point distributions normal to the wall boundary of 12,

20, and 50 points. The profile calculations are presented at
chord stations of 0, 50, and 90 percent. The present fourth-

order method obtained accurate results with as few as 12 points

normal to the wall boundary.

Totol velocity Cross flow velocity

40X10-4 X/C ,92 40X10-4
!- Present Q = r" X/C = ,92

zqLscneme V I _35
"'I--NPZ = 50 _3
30 I-© 20 O 30 = ,50

25 25

Z/C 2O Z/C 2O

15 15

I0 " i0
I DO

5 = 5

0 ,2 .4 ,6 ,8 1,0 1,2 - - - 0

UT/UTE V/VE

FIGURE 17(B)
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CONCLUDING REMARKS

In concluding, the current software package (interface

software; boundary-layer software) is operational and has been

tested for several 3-D flows (see figure 18).

The interface program has been found to be a dependable

approach for developing a user friendly procedure for generating

the boundary-layer grid and transforming an inviscid solution

from a relatively coarse grid to a sufficiently fine boundary-

layer grid. The surface Euler equations used for this procedure

yield smooth inviscid velocity components and gradients along the

boundary-layer coordinate lines. These data are consistent with

the governing equations in satisfying the boundary-layer

equations in the limit as the distance normal to the wall

boundary becomes very large. The interface program will

eventually function as the iterative link between the selected

inviscid software and the boundary-layer software for

inviscid/viscous interactions studies.

The boundary-layer program has been shown to be fourth-order

accurate in the direction normal to the wall boundary and second-

order accurate in planes parallel to the boundary. The fourth-

order accuracy allows accurate calculations with as few as one-

fifth the number of grid points required for conventional second-

order schemes.

• Basic programs have been developed and verified for

several test cases

• Surface Euler equation approach yields smooth

and consistent inviscid edge data

• Boundary-layer procedure has been verified as

computationaily efficient with fourth order

accuracy

FIGURE 18
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